viberl.utils.vector_env
Vector environment utilities for parallel sampling.
Classes:
Name | Description |
---|---|
VectorEnvSampler |
Vector environment sampler for parallel trajectory collection. |
Functions:
Name | Description |
---|---|
create_vector_sampler |
Create a vector environment sampler. |
VectorEnvSampler
VectorEnvSampler(
env_fn: callable, num_envs: int, agent: Agent, max_steps: int = 1000, device: str = 'cpu'
)
Vector environment sampler for parallel trajectory collection.
Initialize vector environment sampler.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
env_fn
|
callable
|
Function that creates a single environment |
required |
num_envs
|
int
|
Number of parallel environments |
required |
agent
|
Agent
|
RL agent to use for action selection |
required |
max_steps
|
int
|
Maximum steps per episode |
1000
|
device
|
str
|
Device for tensor operations |
'cpu'
|
Methods:
Name | Description |
---|---|
reset |
Reset all environments. |
collect_batch_trajectories |
Collect a batch of trajectories using parallel environments. |
collect_trajectory_batch |
Collect a batch of trajectories using parallel sampling. |
close |
Close the vector environment. |
__enter__ |
Context manager entry. |
__exit__ |
Context manager exit. |
Attributes:
Name | Type | Description |
---|---|---|
num_envs |
|
|
agent |
|
|
max_steps |
|
|
device |
|
|
env |
|
|
active_trajectories |
list[list[Transition]]
|
|
active_episode_rewards |
|
|
completed_trajectories |
list[tuple[Trajectory, float]]
|
|
Source code in viberl/utils/vector_env.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
num_envs
instance-attribute
num_envs = num_envs
agent
instance-attribute
agent = agent
max_steps
instance-attribute
max_steps = max_steps
device
instance-attribute
device = device(device)
env
instance-attribute
env = AsyncVectorEnv([env_fn for _ in range(num_envs)])
active_trajectories
instance-attribute
active_trajectories: list[list[Transition]] = [[] for _ in range(num_envs)]
active_episode_rewards
instance-attribute
active_episode_rewards = zeros(num_envs)
completed_trajectories
instance-attribute
completed_trajectories: list[tuple[Trajectory, float]] = []
reset
reset() -> ndarray
Reset all environments.
Returns:
Type | Description |
---|---|
ndarray
|
Initial observations from all environments |
Source code in viberl/utils/vector_env.py
62 63 64 65 66 67 68 69 |
|
collect_batch_trajectories
collect_batch_trajectories(
num_trajectories: int, render: bool = False
) -> list[tuple[Trajectory, float]]
Collect a batch of trajectories using parallel environments.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_trajectories
|
int
|
Number of trajectories to collect |
required |
render
|
bool
|
Whether to render the environments |
False
|
Returns:
Type | Description |
---|---|
list[tuple[Trajectory, float]]
|
List of (trajectory, episode_reward) tuples |
Source code in viberl/utils/vector_env.py
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
|
collect_trajectory_batch
collect_trajectory_batch(batch_size: int, render: bool = False) -> list[tuple[Trajectory, float]]
Collect a batch of trajectories using parallel sampling.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch_size
|
int
|
Number of trajectories to collect |
required |
render
|
bool
|
Whether to render environments |
False
|
Returns:
Type | Description |
---|---|
list[tuple[Trajectory, float]]
|
List of (trajectory, episode_reward) tuples |
Source code in viberl/utils/vector_env.py
165 166 167 168 169 170 171 172 173 174 175 176 177 |
|
close
close() -> None
Close the vector environment.
Source code in viberl/utils/vector_env.py
194 195 196 |
|
__enter__
__enter__() -> Self
Context manager entry.
Source code in viberl/utils/vector_env.py
198 199 200 |
|
__exit__
__exit__(exc_type: object, exc_val: object, exc_tb: object) -> None
Context manager exit.
Source code in viberl/utils/vector_env.py
202 203 204 |
|
create_vector_sampler
create_vector_sampler(
env_fn: callable, num_envs: int, agent: Agent, max_steps: int = 1000, device: str = 'cpu'
) -> Self
Create a vector environment sampler.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
env_fn
|
callable
|
Function that creates a single environment |
required |
num_envs
|
int
|
Number of parallel environments |
required |
agent
|
Agent
|
RL agent to use for action selection |
required |
max_steps
|
int
|
Maximum steps per episode |
1000
|
device
|
str
|
Device for tensor operations |
'cpu'
|
Returns:
Type | Description |
---|---|
Self
|
VectorEnvSampler instance |
Source code in viberl/utils/vector_env.py
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|