viberl.utils.training
Training utilities for VibeRL framework.
This module provides backward compatibility for the old training interface while internally using the new Trainer class.
Functions:
Name | Description |
---|---|
train_agent |
Generic training function for RL agents with periodic evaluation. |
evaluate_agent |
Generic evaluation function for RL agents. |
train_agent
train_agent(
env: Env,
agent: Agent,
num_episodes: int = 1000,
max_steps: int = 1000,
render_interval: int | None = None,
save_interval: int | None = None,
save_path: str | None = None,
verbose: bool = True,
log_dir: str | None = None,
eval_interval: int = 100,
eval_episodes: int = 10,
log_interval: int = 1000,
) -> list[float]
Generic training function for RL agents with periodic evaluation.
.. deprecated:: 1.0
Use :class:viberl.trainer.Trainer
instead.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
env
|
Env
|
Gymnasium environment |
required |
agent
|
Agent
|
RL agent with select_action, store_transition, and update_policy methods |
required |
num_episodes
|
int
|
Number of training episodes |
1000
|
max_steps
|
int
|
Maximum steps per episode |
1000
|
render_interval
|
int | None
|
Render every N episodes |
None
|
save_interval
|
int | None
|
Save model every N episodes |
None
|
save_path
|
str | None
|
Path to save models |
None
|
verbose
|
bool
|
Print training progress |
True
|
log_dir
|
str | None
|
Directory for TensorBoard logs |
None
|
eval_interval
|
int
|
Evaluate every N episodes |
100
|
eval_episodes
|
int
|
Number of evaluation episodes |
10
|
Returns:
Type | Description |
---|---|
list[float]
|
List of episode rewards |
Source code in viberl/utils/training.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
|
evaluate_agent
evaluate_agent(
env: Env, agent: Agent, num_episodes: int = 10, render: bool = False, max_steps: int = 1000
) -> tuple[list[float], list[int]]
Generic evaluation function for RL agents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
env
|
Env
|
Gymnasium environment |
required |
agent
|
Agent
|
RL agent with select_action method |
required |
num_episodes
|
int
|
Number of evaluation episodes |
10
|
render
|
bool
|
Whether to render the environment |
False
|
max_steps
|
int
|
Maximum steps per episode |
1000
|
Returns:
Type | Description |
---|---|
tuple[list[float], list[int]]
|
Tuple of (episode_rewards, episode_lengths) |
Source code in viberl/utils/training.py
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
|